Apr 17, 2010

x - ray and google affiliate


Hand mit Ringen (Hand with Rings): print of Wilhelm Röntgen's first "medical" X-ray, of his wife's hand, taken on December 22, 1895 and presented to Professor Ludwig Zehnder of the Physik Institut, University of Freiburg, on 1 January 1896[1][2]
X-radiation (composed of X-rays) is a form of electromagnetic radiation. X-rays have a wavelength in the range of 10 to 0.01 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz (3 × 1016 Hz to 3 × 1019 Hz) and energies in the range 120 eV to 120 keV. They are shorter in wavelength than UV rays. In many languages, X-radiation is called Röntgen radiation, after Wilhelm Conrad Röntgen, who is generally credited as their discoverer, and who had named them X-rays to signify an unknown type of radiation.[3]:1-2
X-rays from about 0.12 to 12 keV (10 to 0.10 nm wavelength), are classified as "soft" X-rays, and from about 12 to 120 keV (0.10 to 0.010 nm wavelength) as "hard" X-rays, due to their penetrating abilities.
Hard X-rays can penetrate solid objects, and their largest use is to take images of the inside of objects in diagnostic radiography and crystallography. As a result, the term X-ray is metonymically used to refer to a radiographic image produced using this method, in addition to the method itself. By contrast, soft X-rays can hardly be said to penetrate matter at all; for instance, the attenuation length of 600 eV (~ 2 nm) x-rays in water is less than 1 micrometer[4] X-rays are a form of ionizing radiation, and exposure to them can be a health hazard.
The distinction between X-rays and gamma rays has changed in recent decades. Originally, the electromagnetic radiation emitted by X-ray tubes had a longer wavelength than the radiation emitted by radioactive nuclei (gamma rays).[4] So older literature distinguished between X- and gamma radiation on the basis of wavelength, with radiation shorter than some arbitrary wavelength, such as 10−11 m, defined as gamma rays.[5] However, as shorter wavelength continuous spectrum "X-ray" sources such as linear accelerators and longer wavelength "gamma ray" emitters were discovered, the wavelength bands largely overlapped. The two types of radiation are now usually distinguished by their origin: X-rays are emitted by electrons outside the nucleus, while gamma rays are emitted by the nucleus


he measure of X-rays ionizing ability is called the exposure:
  • The coulomb per kilogram (C/kg) is the SI unit of ionizing radiation exposure, and it is the amount of radiation required to create one coulomb of charge of each polarity in one kilogram of matter.
  • The roentgen (R) is an obsolete traditional unit of exposure, which represented the amount of radiation required to create one electrostatic unit of charge of each polarity in one cubic centimeter of dry air. 1.00 roentgen = 2.58×10−4 C/kg
However, the effect of ionizing radiation on matter (especially living tissue) is more closely related to the amount of energy deposited into them rather than the charge generated. This measure of energy absorbed is called the absorbed dose:
  • The gray (Gy), which has units of (Joules/kilogram), is the SI unit of absorbed dose, and it is the amount of radiation required to deposit one joule of energy in one kilogram of any kind of matter.
  • The rad is the (obsolete) corresponding traditional unit, equal to 10 millijoules of energy deposited per kilogram. 100 rad = 1.00 gray.
The equivalent dose is the measure of the biological effect of radiation on human tissue. For X-rays it is equal to the absorbed dose.
  • The sievert (Sv) is the SI unit of equivalent dose, which for X-rays is numerically equal to the gray (Gy).
  • The Roentgen equivalent man (rem) is the traditional unit of equivalent dose. For X-rays it is equal to the rad or 10 millijoules of energy deposited per kilogram. 1.00 Sv = 100 rem.
Medical X-rays are a significant source of manmade radiation exposure, accounting for 58% in the United States in 1987, but since most radiation exposure is natural (82%), X-rays only account for 10% of total American radiation exposure.[9]
Reported dosage due to dental X-rays seems to vary significantly. Depending on the source, a typical dental X-ray of a human results in an exposure of perhaps, 3,[10] 40,[11] 300,[12] or as many as 900[13] mrems (30 to 9,000 μSv).

Medical physics

X-rays are generated by an X-ray tube, a vacuum tube that uses a high voltage to accelerate the electrons released by a hot cathode to a high velocity. The high velocity electrons collide with a metal target, the anode, creating the X-rays.[15] In medical X-ray tubes the target is usually tungsten or a more crack-resistant alloy of rhenium (5%) and tungsten (95%), but sometimes molybdenum for more specialized applications, such as when soft X-rays are needed as in mammography. In crystallography, a copper target is most common, with cobalt often being used when fluorescence from iron content in the sample might otherwise present a problem.
The maximum energy of the produced X-ray photon is limited by the energy of the incident electron, which is equal to the voltage on the tube, so an 80 kV tube cannot create X-rays with an energy greater than 80 keV. When the electrons hit the target, X-rays are created by two different atomic processes:
  1. X-ray fluorescence: If the electron has enough energy it can knock an orbital electron out of the inner electron shell of a metal atom, and as a result electrons from higher energy levels then fill up the vacancy and X-ray photons are emitted. This process produces an emission spectrum of X-ray frequencies, sometimes referred to as the spectral lines. The spectral lines generated depend on the target (anode) element used and thus are called characteristic lines. Usually these are transitions from upper shells into K shell (called K lines), into L shell (called L lines) and so on.
  2. Bremsstrahlung: This is radiation given off by the electrons as they are scattered by the strong electric field near the high-Z (proton number) nuclei. These X-rays have a continuous spectrum. The intensity of the X-rays increases linearly with decreasing frequency, from zero at the energy of the incident electrons, the voltage on the X-ray tube.
So the resulting output of a tube consists of a continuous bremsstrahlung spectrum falling off to zero at the tube voltage, plus several spikes at the characteristic lines. The voltages used in diagnostic X-ray tubes, and thus the highest energies of the X-rays, range from roughly 20 to 150 kV.[16]
In medical diagnostic applications, the low energy (soft) X-rays are unwanted, since they are totally absorbed by the body, increasing the dose. Hence, a thin metal sheet, often of aluminum, called an X-ray filter) is usually placed over the window of the X-ray tube, filtering out the low energy components in the spectrum. This is called hardening the beam.
Both of these X-ray production processes are very inefficient, with a production efficiency of only about one percent, and hence, to produce a usable flux of X-rays, a high percentage of the electric power inputted is released as waste heat. The designers must design the X-ray tube to dissipate this excess heat.
Radiographs obtained using X-rays can be used to identify a wide spectrum of pathologies. Due to their short wavelengths, in medical applications X-rays act more like particles than waves. This is in strong contrast to the application of X-rays in crystallography, X-ray crystallography, where their wave-like nature is more important.
To make an X-ray image of human or animal bones, short X-ray pulses illuminate the body or limb, with radiographic film placed behind it. Any bones that are present absorb most of the X-ray photons by photoelectric processes. This is because bones have a higher electron density than soft tissues. [Note that bones contain a high percentage of calcium (20 electrons per atom), potassium (19 electrons per atom) magnesium (12 electrons per atom), and phosphorus (15 electrons per atom). The X-rays that pass through the flesh leave a latent image in the photographic film. When the film is developed, the parts of the image corresponding to higher X-ray exposure are dark, leaving a white shadow of bones on the film.
To generate an image of the cardiovascular system, including the arteries and veins (angiography) an initial image is taken of the anatomical region of interest. A second image is then taken of the same region after iodinated contrast material has been injected into the blood vessels within this area. These two images are then digitally subtracted, leaving an image of only the iodinated contrast outlining the blood vessels. The radiologist or surgeon then compares the image obtained to normal anatomical images to determine if there is any damage or blockage of the vessel.
A specialized source of X-rays which is becoming widely used in research is synchrotron radiation, which is generated by particle accelerators. Its unique features are X-ray outputs many orders of magnitude greater than those of X-ray tubes, wide X-ray spectra, excellent collimation, and linear polarization.[17]

No comments:

Post a Comment